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Abstract

This paper deals with the stability and the dynamics of a harmonically excited elastic-perfectly plastic oscillator. The

hysteretical system is written as a non-smooth forced autonomous system. It is shown that the dimension of the phase

space can be reduced using adapted variables. Free vibrations of such a system are then considered for the damped system.

The extended direct method of Liapounov is applied to this non-smooth mechanical system and the asymptotic stability of

the origin is proven in the new phase space. The forced vibration of such an oscillator is treated by numerical approach, by

using the time locating techniques. The stability of the limit cycles is analytically investigated with a perturbation

approach. The boundary between elastoplastic shakedown and alternating plasticity is given in closed form. It is shown

that this boundary corresponds to a bifurcation boundary for the undamped system (period-doubling bifurcation). Finally,

the equivalent damping of this hysteretic system is characterized from dynamical properties.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of designing reliable civil engineering structures to resist to strong earthquake ground motions
leads naturally to the investigation of the dynamic behaviour of structures beyond the yield limit. The
elastoplastic behaviour is probably one of the most commonly used constitutive laws of inelasticity in the
nonlinear range. For fundamental analysis and understanding of the dynamics of such inelastic structures, a
single-degree-of-freedom system is often considered. As a consequence, dynamics of an elastoplastic single-
degree-of-freedom system may constitute a generic structural case that is very useful in the analysis of more
complex structures. This paper is devoted to the stability and the dynamics of a harmonically excited elastic-
perfectly plastic oscillator. It can be recalled that perfect plasticity only means that the yield force (or
maximum force in the elastic domain) remains constant during the plastic flow. Of course, perfect plasticity is
a particular case of hardening plasticity (in this case, the yield force may evolve during the plastic flow) and
consequently the literature dealing with hardening plastic oscillators also includes perfect plastic oscillators
(see Ref. [1] for the synthesis of main constitutive laws). It could be quite surprising that a specific paper would
be focused nowadays on an apparently so simple system. The motivations are first to analyse the dynamics of
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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such an oscillator from a new point of view, using a very common technique in the field of non-smooth
dynamics [2]. Secondly, the paper presents some fundamental phenomena associated to the theory of
shakedown of elastoplastic structures. Shakedown can be defined as the capability for the oscillator to
converge towards a stationary elastic regime (stationary regime without plastic phases). This property is
very important for the structural system to be guaranteed, in order to achieve reliable engineering design
(the reader should refer to [3] for an extensive description of this problem in quasi-static analysis). Finally,
the connection between equivalent damping and dynamical properties of the elastoplastic system will
be discussed.

There have been numerous studies on the forced response of elastoplastic oscillators using a bilinear
hysteretic model (also called linear kinematic hardening rule). Jacobsen [4] and Tanabashi [5] are
among the earlier investigators studying the forced vibration response of yielding oscillators to simple
pulses and square waves. Caughey [6] was the first to obtain an approximation of the steady-state response of
the undamped bilinear hysteretic oscillator subjected to harmonic pulsation. Caughey [6] uses the method
of slowly varying parameters to approximate the response and he investigates the stability of the postulated
periodic evolutions. One of the main results of Caughey’s reference study is that the steady-state response
of this oscillator was stable for all the involved parameters. Jennings [7] or Iwan [8] generalized the
results of Caughey [6] by considering more complex hysteretic models and by adding some damping.
The first considers Ramberg–Osgood’s model whereas the second studies a particular hysteretic model
called the double bilinear hysteretic model. More recently, Capecchi [9] studied the Bouc’s hysteresis
model. It is not the purpose of this paper to enumerate all hysteresis models and their dynamics
properties.

The important point is that most of these studies use mainly approximate analytical techniques such as
averaging method [6–8], harmonic balance method [10] or by combining Fourier transform and harmonic
balance technique [9]. The latter is probably one of the most efficient. However, the accuracy of the results
depends, like all harmonic balance techniques, on the number of harmonics included. These problems become
more prominent if the response contains sharp spikes (i.e. due to the sharp change in the restoring force at the
elastic–plastic boundary) when a large number of harmonics need to be retained (Chatterjee et al. [11]). In the
present paper, it is shown that the dynamics of the elastoplastic oscillator is a forced piecewise linear system.
The dynamics is computed using the time locating techniques, as initiated by Masri [12] for impact dampers.
The stability analysis is carried out by using a perturbation approach, first applied to impact dampers (Masri
and Caughey [13]). Due to the non-smooth nonlinearities, the stability of the periodic solution is determined
by investigating the asymptotic behaviour of perturbations to the steady state periodic solution, as the usual
method involving the classical Floquet theory is not applicable to such a non-smooth system. This method
also called the method of error propagation [11] needs the accurate knowledge of the number of junctions to
be encountered during one period. This method was also applied by Miller and Butler [14] or Capecchi [15] to
the undamped elastoplastic oscillator. The damped elastoplastic oscillator was studied by Masri [16] who
investigates the exact steady-state motion by using the piece-wise linear properties of the non-smooth
dynamical system. Masri [16] extended the pioneering work of Iwan [17] who also determined the exact steady-
state motion of the undamped system. Coman [18,19] questioned the boundedness of trajectories of the
damped elastoplastic oscillator. Dynamics of the damped forced elastoplastic oscillator has been recently
considered by Liu and Huang [20] who have obtained a closed-form solution of the exact steady-state motion
[20]. Moreover, they have shown for a specific range of parameters that this steady-state motion is not unique.
We will discuss this result later in the paper. It is interesting to notice that dynamics of elasto-plastic
oscillators, dynamics of friction oscillators or dynamics of impact dampers are finally closely connected by
similar analysis techniques, due to their non-smooth nature. Recent contributions to the stability analysis of
these periodically forced piecewise linear oscillators are those of Wiercigroch [21], Awrejcewicz and Lamarque
[2], Ji and Leung [22] or Luo and Chen [23].

In this paper, the presented perturbation method is applied to the harmonically excited elastic-perfectly
plastic oscillator. In the first part, the dynamic hysteretic system is written as a non-smooth forced
autonomous system. It is shown that the dimension of the phase space can be reduced using adapted variables.
Free vibrations of such a system are then considered and the asymptotic stability of the origin in the new
phase space is shown. However, this fixed point depends on the initial conditions in the initial phase space.
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The forced vibration of such an oscillator is treated by numerical approach, by using the time locating
technique. The stability of the limit cycles obtained for a certain range of structural parameters (damping,
force intensity and excitation frequency) is then analytically investigated. A bifurcation boundary is
highlighted in the space of structural parameter and connected to the shakedown-alternating plasticity
boundary (Challamel [24]).

2. Equations of motion

Let us consider the simple system shown in Fig. 1. A mass M is attached to a viscous elasto-plastic spring.
The inelastic system is externally excited by a harmonic force F(t) defined by the intensity F0, and angular
frequency O. t is the time and a superposed dot represents a time differentiation. This oscillator is
characterized by the displacement U, displacement rate _U , and a plastic internal variable, chosen as the plastic
displacement Up. The plastic incremental law is illustrated in Fig. 2. This is a simple elastoplastic perfect law,
which depends on two parameters, i.e., the elastic stiffness K0 and the maximum force F+. UY is the elastic
displacement, limit of the initial virgin state ðUY ¼ Fþ=K0Þ. The damping coefficient is denoted by C.

Two dynamic states can be distinguished. These two states correspond to a reversible state Ê (or elastic
state) and an irreversible state P̂ (or plastic state), associated with plastic displacement evolution. This plastic
state P̂ can be decomposed into two states P̂

þ
and P̂

�
, depending on the sign of the elastic displacement

U�Up. The equation of motion of the damped elasto-plastic oscillator can be written as

Ê state : M €U þ C _U þ K0ðU �UpÞ ¼ F ðtÞ; _Up ¼ 0,

P̂
þ
state : M €U þ C _U þ Fþ ¼ F ðtÞ; _Up ¼ _U ,

P̂
�
state : M €U þ C _U � Fþ ¼ F ðtÞ; _Up ¼ _U with F ðtÞ ¼ F0 cos Ot. ð1Þ
(U,U,U
p
)

F
0
cos(��t)

K
0

, F +

C

.

Fig. 1. Description of the elastic-perfectly plastic oscillator.
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Fig. 2. Plastic incremental law for the inelastic spring.
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Each state is defined from a partition of the phase space ðU ; _U ;UpÞ:

Ê state : ðjU �UpjoUY Þ or ðjU �Upj ¼ UY Þ and ð _UðU �UpÞp0Þ
� �

,

P̂
þ
state : ðU �Up ¼ UY Þ and _UX0,

P̂
�
state : ðU �Up ¼ �UY Þ and _Up0. ð2Þ

This is clearly a piecewise linear oscillator and a non-smooth system (as in Shaw and Holmes [25]).
The dimensionless phase variables are introduced as follows:

u; _u; up

� �
¼

U

UY

;
_U

UY

;
Up

UY

� �
. (3)

The time constant of the dynamical system is introduced as

t� ¼

ffiffiffiffiffiffi
M

K0

r
. (4)

New temporal derivatives can be calculated with respect to the dimensionless time parameter

t ¼
t

t�
. (5)

It means that the dot now represents a time differentiation with respect to dimensionless variable t.
The equations of motion can now be formulated using the dimensionless variables:

Ê state : €uþ 2B _uþ ðu� upÞ ¼ f 0 cos ot; _up ¼ 0,

P̂
þ
state : €uþ 2B _uþ 1 ¼ f 0 cos ot; _up ¼ _u,

P̂
�
state : €uþ 2B _u� 1 ¼ f 0 cos ot; _up ¼ _u

with f 0 ¼ F0=Fþ; o ¼ O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=K0

p
; B ¼ C=2

ffiffiffiffiffiffiffiffiffiffiffi
MK0

p
. ð6Þ

B is the damping ratio (positive parameter). The three states are now governed by

Ê state : ðju� upjo1Þ or ðju� upj ¼ 1Þ and ð _uðu� upÞp0Þ
� �

,

P̂
þ
state : ðu� up ¼ 1Þ and _uX0,

P̂
�
state : ðu� up ¼ �1Þ and _up0. ð7Þ

The dimension of the phase space can be reduced using the elastic displacement variable

v ¼ u� up. (8)

The new phase space is then reduced to ðv; _uÞ. This is an important property of this perfectly plastic
oscillator. Such a reduction of the dimension of the phase space would not be possible for the kinematic
hardening plastic oscillator for instance. This property significantly simplifies the calculations for the
investigations of the steady-state motion and for the stability analysis. It can be remarked that the elastic
displacement is nothing else than the constitutive force for the dimensionless dynamical system. This reduced
phase space was also used by Capecchi [15] or Coman [18]. Thus, the new equivalent dynamical system is now
given by

Ê state : €uþ 2B _uþ v ¼ f 0 cos ot; _v ¼ _u,

P̂
þ

state : €uþ 2B _uþ 1 ¼ f 0 cos ot; _v ¼ 0,

P̂
�
state : €uþ 2B _u� 1 ¼ f 0 cos ot; _v ¼ 0. ð9Þ
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Correspondingly, the three states in the ðv; _uÞ phase space are

Ê state : ðjvjo1Þ or jvj ¼ 1ð Þ and _uvp0ð Þ½ �,

P̂
þ

state : ðv ¼ 1Þ and _uX0,

P̂
�
state : ðv ¼ �1Þ and _up0. ð10Þ

These two systems Eqs. (9) and (10) can be merged into one non-smooth system by using non-smooth
functions (as suggested by Chicurel-Uziel [26] for piecewise linear springs):

€u ¼ �2B _u� vþ f 0 cos ot;

_v ¼ j _uj½hð1� vÞ � hð1þ vÞ� þ _uhð1� jvjÞ
with hðxÞ ¼

1 if x40;
1
2

if x ¼ 0;

0 if xo0:

8><
>: (11)

Here, h is the Heaviside step function. The non-smooth character of such a system is no longer ambiguous
with this unified presentation.

3. Free vibrations

For f 0 ¼ 0, i.e. for free vibration, the dynamic system is an autonomous system with a two-dimensional
phase space associated with the coordinates ðv; _uÞ. This conversion from the inelastic system (and hysteretical
system) to an autonomous system was soon noticed by adding internal variables (see Savi and Pacheco [27] or
more recently Challamel and Pijaudier-Cabot [28] for damage systems or Challamel and Pijaudier-Cabot
[29] for plastic softening systems). The asymptotic stability of the origin point will be shown with two
different methods, first by solving the evolution problem, and secondly by using the extended direct method
of Liapounov. We have to mention that the application of the extended direct method of Liapounov
(for non-smooth systems) to elastoplastic systems, has not been reported in the literature, to the authors
knowledge.

3.1. Evolution problem

The initial time is arbitrarily chosen to vanish ðt0 ¼ 0Þ. It may be assumed that the perturbation first leads to
an elastic regime such as

€vþ 2B_vþ v ¼ 0,

_u ¼ _v with vðt0 ¼ 0Þ ¼ v0; _uðt0 ¼ 0Þ ¼ _u0 ¼ _v0. ð12Þ

The dynamic response is simply obtained by

vðtÞ ¼ v0 cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t

	 

þ
_u0 þ v0Bffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t

	 
 !
expð�BtÞ,

_uðtÞ ¼ _u0 cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t

	 

�

v0 þ _u0Bffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t

	 
 !
expð�BtÞ. ð13Þ

For sufficiently small perturbations, the motion remains elastic and the origin is asymptotically stable
as for classically damped linear oscillators. However, for sufficiently large perturbations, a plastic phase is
initiated:

9t140= vðt1Þ
�� �� ¼ 1. (14)
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It can be shown that the sign of v during this plastic phase depends on the initial perturbation _u0. Equation
of motion in the plastic regime is given by

€uþ 2B _uþ v ¼ 0,

jvj ¼ 1 with vðt1Þ ¼ v1; _uðt1Þ ¼ _u1, ð15Þ

whose solution is

vðtÞ ¼ v1,

_uðtÞ ¼ _u1 þ v1
1

2B

� �
exp �2Bðt� t1ÞÞð � v1

1

2B
. ð16Þ

It is easy to show that j _uðtÞj decreases during this plastic phase, and vanishes at time t2:

_u t2ð Þ ¼ 0) t2 ¼ t1 þ
1

2B
ln 1þ 2B

_u1

v1

� �
. (17)

At time t2, the system goes into an elastic phase and remains in this stage.

vðtÞ ¼ v2 cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
ðt� t2Þ

	 

þ
_u2 þ v2Bffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
ðt� t2Þ

	 
 !
exp �Bðt� t2Þð Þ,

_uðtÞ ¼ _u2 cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t� t2ð Þ

	 

�

v2 þ _u2Bffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t� t2ð Þ

	 
 !
exp �Bðt� t2Þð Þ

with v t2ð Þ ¼ v2 ¼ v1; _u t2ð Þ ¼ _u2 ¼ 0. ð18Þ

It means that in both cases (with or without intermediate plastic phase), the origin is asymptotically stable
for the damped system B40. This is well illustrated in Fig. 3, obtained with a perturbation leading to a plastic
transitory phase. This simulation also shows the potential wall analogy for this elastoplastic system. The
trajectory that comes from the elastic phase faces the plastic potential wall and dissipates energy until the
displacement rate vanishes.
Fig. 3. Free vibrations—asymptotic stability of the origin point ðv; _uÞ ¼ ð0; 0Þ.
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3.2. Direct method of Liapounov

It has to be specified that the direct method of Liapounov was initially developed by Liapounov for smooth
systems (see for instance La Salle and Lefschetz [30]). Extension of such methodology to non-smooth systems
is a recent topic since the pioneer work of Filippov [31] (Shevitz and Paden [32]; Wu and Sepehri [33];
Bourgeot and Brogliato [34]). For the non-smooth system depicted in Eq. (11), a smooth Liapounov function
can be chosen as

V _u; vð Þ ¼ 1
2
_u2 þ 1

2
v2. (19)

The direct method of Liapounov is based on the calculation of the time derivative of V. Nevertheless, this
derivative does not exist in the classical sense at the intersection of the elastic and the plastic states (it only
exists almost everywhere). It is possible to show that

dV v; _uð Þ

dt
2
_~V where _~V ¼

qV

qv
;
qV

q _u

� �
K j _uj h 1� vð Þ � h 1þ vð Þ½ � þ _uh 1� jvjð Þ½ �

K �2B _u� v½ �

 !
. (20)

K is called Filippov’s set. This set can be calculated for the Heaviside function

K hðxÞ½ � ¼ HðxÞ with HðxÞ ¼

1 if x40;

½0; 1� if x ¼ 0;

0 if xo0:

8><
>: (21)

~V
:

can then be simplified as

~V
:

¼ �2B _u2 þ v j _uj Hð1� vÞ �Hð1þ vÞð Þ þ _u Hð1� jvjÞ � 1ð Þ½ �. (22)

The final result is obtained:

Ê state : ~V
:

¼ �2B _u2p0,

P̂ state : ~V
:

¼ �2B _u2 � 2j _ujHð0Þp0. ð23Þ

V is a positive and definite function. Each element of ~V
:

is negative or zero. Then, the origin (0, 0) is stable
in the sense of Liapounov (for instance Ref. [32]). Moreover, the non-smooth version of LaSalle’s theorem
leads to the asymptotic stability in this case. The largest invariance set defined by the vanishing of ~V

:

can be
calculated as

_u ¼ 0, (24)

~V
:

vanishes on the _u ¼ 0 axis. Other than the trivial solution ðv; _uÞ ¼ ð0; 0Þ, there is no further solution of
Eq. (11) (with f 0 ¼ 0) for which ~V

:

vanishes identically. Thus, the trivial solution is asymptotically stable and
the domain of attraction is the whole phase space. These results on the asymptotical stability of the origin, are
confirmed by the works of Judge and Pratap [35] who treat the more general case of the damped plastic
hardening oscillator.
4. Forced vibrations—analysis

4.1. Equations

As for general piecewise linear oscillators, solutions of the periodically forced oscillator Eq. (9) are known
explicitly for each state. The initial conditions at the beginning of each state are written by

v tið Þ; _u tið Þð Þ ¼ vi; _uið Þ. (25)
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The solution to the Ê state can be calculated as

vðtÞ ¼

cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t� tið Þ

	 

vi � f 0

1� o2
� �

cos otið Þ þ 2oB sin otið Þ

1� o2ð Þ
2
þ 4o2B2

 !
þ sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t� tið Þ

	 


viBþ _uiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p þ f 0

�B 1þ o2
� �

cos otið Þ þ o 1� o2 � 2B2
� �

sin otið Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
1� o2ð Þ

2
þ 4o2B2

	 

0
@

1
A

0
BBBBBBB@

1
CCCCCCCA

� e�B t�tið Þ þ f 0

ð1� o2Þ cosðotÞ þ 2oB sinðotÞ

ð1� o2Þ
2
þ 4B2o2

,

_uðtÞ ¼

cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t� tið Þ

	 

_ui þ f 0

�2o2B cos otið Þ þ o 1� o2
� �

sin otið Þ

1� o2ð Þ
2
þ 4o2B2

 ! !
þ sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t� tið Þ

	 


�
vi þ _uiBffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p þ f 0

cos otið Þ 2o2B2 þ 1� o2
� �

þ sin otið Þ oB 1þ o2
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
1� o2ð Þ

2
þ 4o2B2

	 

0
@

1
A

0
BBBBBBB@

1
CCCCCCCA

� e�Bðt�tiÞ þ of 0

2oB cosðotÞ � ð1� o2Þ sinðotÞ

ð1� o2Þ
2
þ 4B2o2

. ð26Þ

The solution to the P̂ state can be calculated as

vðtÞ ¼ vi ¼ �1,

_uðtÞ ¼ _ui þ
vi

2B
� f 0

2B cosðotiÞ þ o sinðotiÞ

4B2 þ o2

� �
e�2Bðt�tiÞ �

vi

2B
þ f 0

2B cosðotÞ þ o sinðotÞ
4B2 þ o2

. ð27Þ

Piecing together these known solutions is not directly possible however, since the time of flight in each
region (each state) cannot be found in closed-form solution for the forced oscillator. The method of locating
events is used in the integration process (see Ref. [25] for instance). For the initial conditions specified, the
computer solves the crossing time ti+1 using a simple Newton–Raphson method. The nonlinear equation to be
solved is given by Eq. (26) when the initial state is elastic:

v tiþ1ð Þ
�� �� ¼ 1, (28)

whereas the nonlinear equation to be solved is given by Eq. (27) when the initial state is plastic:

_u tiþ1ð Þ ¼ 0. (29)

The new time ti+1 is used for the equation of motion in the new region encountered. This method is
considerably more accurate than usual numerical solutions of ordinary differential equations, the only
approximation being made on the calculation of the crossing time.

4.2. Numerical results—shape of the limit cycles

The numerical analysis is performed for strictly positive damping ratios. All trajectories tend towards
periodic orbits, which can be viewed as ‘‘limit cycles’’ in the ðv; _uÞ space. These ‘‘limit cycles’’ do not depend on
initial conditions. In reality, the periodic orbits are completely characterized in the ðv; _u; tÞ space. Numerical
simulations show that these periodic orbits are asymptotically stable for all perturbations. In this sense, the
behaviour of the damped elastoplastic oscillator is much simpler than the one of the undamped which does not
possess this fundamental property. All these limit cycles are symmetrical cycles (central symmetry with respect
to the origin point), as characterized for instance by Luo [36] for other dynamical systems. As a consequence
of this symmetry, no incremental collapse can be found for the stable periodic orbits of this damped oscillator
(see Ref. [24] for the undamped system). The period of these limit cycles is equal to 2p=o. It is interesting to
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Fig. 4. Elastoplastic shakedown—ðv0; _u0Þ ¼ ð0; 0Þ; B ¼ 0:1; o ¼ 0:5; f 0 ¼ 0:6.

Fig. 5. Alternating plasticity—ðv0; _u0Þ ¼ ð0; 0Þ; B ¼ 0:1; o ¼ 0:5; f 0 ¼ 1.

N. Challamel, G. Gilles / Journal of Sound and Vibration 301 (2007) 608–634616
denote that this periodicity result is no more valid for a bilinear elastic oscillator, where the period of the limit
cycles has been observed to be different in some cases [37]. The shape of the limit cycles depends on the values
of the structural parameters ðf 0;o; BÞ. Shakedown (elastic stationary evolutions) is described by a smooth limit
cycle whereas alternating plasticity is depicted by non-smooth cycles. It means that these two basic phenomena
can be differentiated by simple geometrical arguments in the phase space. These two phenomena are
illustrated by Fig. 4 (elastoplastic shakedown) and Fig. 5 (alternating plasticity). In both cases, the limit cycles
are asymptotically stable and initial conditions do not affect the shape of the limit cycles (see Figs. 6 and 7).
However, in both cases, the mean value of the total displacement u strongly depends on initial conditions
(Fig. 8). As a consequence, it is confirmed that the initial phase space ðu; up; _uÞ cannot be associated with
‘‘limit cycles’’ and is probably not the best choice to analyse the nonlinear dynamics of the plastic system.
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Fig. 7. Alternating plasticity—convergence towards the limit cycle for different initial conditions; B ¼ 0:1; o ¼ 0:5; f 0 ¼ 1.

Fig. 6. Elastoplastic shakedown—convergence towards the limit cycle for different initial conditions; B ¼ 0:1; o ¼ 0:5; f 0 ¼ 0:6.
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The equation of the limit cycle in the shakedown area is obtained from Eq. (26) by considering only the
stationary term

vðtÞ ¼ f 0

ð1� o2Þ cosðotÞ þ 2oB sinðotÞ

ð1� o2Þ
2
þ 4B2o2

,

_uðtÞ ¼ of 0

2oB cosðotÞ � ð1� o2Þ sinðotÞ

ð1� o2Þ
2
þ 4B2o2

. ð30Þ

This is a centred ellipse whose equation is given by

v2

a2
þ
_u2

b2
¼ 1 with a ¼

f 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� o2Þ

2
þ 4o2B2

q and b ¼ ao. (31)
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Fig. 8. Influence of initial conditions on the total displacement u; B ¼ 0:1; o ¼ 0:5; f 0 ¼ 1; u0 ¼ 0.

Fig. 9. Boundary between elastoplastic shakedown and incremental collapse in the space (o, f0); zA{0, 0.1, 0.2, 0.3}.
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The equation of the limit cycle at the boundary between shakedown and alternating plasticity is obtained
when the ellipse parameter a is equal to 1 in Eq. (31), i.e.

f 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� o2Þ

2
þ 4o2B2

q
. (32)

In this case, the equation of the ellipse which is tangent to the axis jvj ¼ 1 is reduced to

v2 þ
_u2

o2
¼ 1. (33)



ARTICLE IN PRESS
N. Challamel, G. Gilles / Journal of Sound and Vibration 301 (2007) 608–634 619
This boundary between shakedown and alternating plasticity was already investigated by Liu and Huang
[20]. In the case of the undamped system (see also Refs. [14,24]), Eq. (32) can be simplified by

f 0 ¼ j1� o2j. (34)

The boundary equation (32) is graphically represented in Fig. 9.
Fig. 10. Convergence towards the non-standard (1, 4)-periodic orbit; ðv0; _u0Þ ¼ ð0; 0Þ; B ¼ 0:001; o ¼ 0:05; f 0 ¼ 1:1.

Fig. 11. Non-standard (1, 2)-limit cycle; B ¼ 0:1; o ¼ 0:1; f 0 ¼ 2.
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4.3. Numerical results—stability analysis

The periodic alternating plasticity motion can be classified, as for instance by Awrejcewicz and Lamarque
[2] for mechanical systems with impacts. We will call (n, k)-periodic solution of period nT with k plastic phases
Fig. 12. (1, 4)-limit cycle; B ¼ 0:1; o ¼ 0:11; f 0 ¼ 2.

Fig. 13. (1, 6)-limit cycle; B ¼ 0:02; o ¼ 0:025; f 0 ¼ 2.
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per cycle, where T ¼ 2p=o is the period of the external excitation. Within this classification, most of the
simulations exhibit stable (1, 2)-periodic solutions. This is the case for the simulation of Fig. 5. Non-standard
1-periodic solutions can also be observed for small values of the angular frequency o (see Fig. 10). ‘‘Non-
standard’’ here means that higher harmonics are involved during the stationary evolution. The superharmonic
Fig. 14. Non-standard (1, 2)-limit cycle; B ¼ 0:02; o ¼ 0:005; f 0 ¼ 2.

Fig. 15. Non-standard (1, 2)-limit cycle; B ¼ 0:02; o ¼ 0:005; f 0 ¼ 2.
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resonances occur when the angular frequency is close to 1
3
; 1
5
; 1
7
; . . . This phenomenon was first mentioned in

Ref. [14] or Ref. [15] for the undamped system, or in Ref. [20] for the same damped system. Superharmonic
resonance is closely related to the appearance of stable (1, 4)-periodic solutions or other periodic orbits
with more than two plastic phases. The process of the genesis of such orbits is much more clearly explained
by considering Figs. 11 and 12. A slight perturbation of the angular frequency o from 0.1 to 0.11 (other
structural parameters B and f0 are kept constant) shows the route from (1, 2)-periodic solution to (1, 4)-
periodic solution. The loop generated by the higher harmonics leads to the (1, 4)-periodic solution in this case.
The number of plastic phases can be greater than two, as shown for instance by the (1, 6) periodic solution
of Fig. 13. Higher harmonics play a crucial role for small values of the angular frequency o, as in the case of
Fig. 14 ðo ¼ 0:005Þ. The same figure with a change of scale (Fig. 15) indicates that the oscillator behaves like
a rigid plastic oscillator in this range, with large values of the displacement rate _u. The general trend of
the maximum value of the displacement rate _u as o approaches zero is towards an infinite response,
although the motion remains periodic for f0 greater than 1. This characteristic value ðf 0 ¼ 1Þ belongs to the
boundary between shakedown and alternating plasticity. It corresponds to the static value of the
shakedown boundary ðF0 ¼ FþÞ. The case of the undamped elastoplastic oscillator has been already treated
in Ref. [24]. A bifurcation boundary separates the alternating plasticity and the shakedown area. This
phenomenon will be confirmed later in the paper by considering negative damping ratio values. Elastoplastic
shakedown is associated with the dependence on initial conditions for the undamped system. However, most
of the presented studies are only based on numerical simulations. The following part is focused on the
characterization of these periodic solutions according to their stability properties.
5. Forced vibrations—closed-form solution of some steady-state vibrations

The existence and uniqueness of a periodic and symmetrical (1, 2) solution is treated in this part. It is clear
however, that these solutions are only a family of solutions of the global system. For instance, unsymmetrical
solutions cannot be covered by this fundamental assumption. In the same way, a periodic (1, 4) solution
cannot be obtained (even if it has been numerically observed for small pulsation values). The time at the
beginning of an elastic phase is searched for the stationary periodic (1, 2) solution (this time can be evaluated
with a constant of np=o as the stationary motion is symmetrical). The methodology is based on the
fact that the duration in each phase (one elastic phase and one plastic phase) is exactly equal to half a period of
the cycle:

t2ðt0Þ � t0 ¼
p
o
, (35)

where t0 is the time at the beginning of the elastic phase following the plastic phase P̂
�
, t1 is the time at the end

of this elastic phase and t2 is the time at the end of the plastic phase P̂
þ
(see Fig. 16). The most general method

needs the resolution of a nonlinear system of three functions, defined by Eqs. (26) and (27):

Ê state : vðt0; t1Þ ¼ 1; _u1 ¼ _uðt0; t1Þ,

P̂
þ
state : _uðt1; t2; _u1Þ ¼ 0,

t2 � t0 ¼
p
o
. ð36Þ

This system can simply be reduced to two nonlinear functions:

Ê state : v t0; t1ð Þ ¼ 1; _u1 ¼ _u t0; t1ð Þ,

P̂
þ
state : _u t1; t0 þ

p
o
; _u1

	 

¼ 0, ð37Þ



ARTICLE IN PRESS

Fig. 16. Definition of the time-parameters of the limit cycle.
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which can be expressed by

cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t1 � t0ð Þ

	 

� �1� f 0

1� o2
� �

cos ot0ð Þ þ 2oB sin ot0ð Þ

1� o2ð Þ
2
þ 4o2B2

 !
þ sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t1 � t0ð Þ

	 


�Bffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p þ f 0

�B 1þ o2
� �

cos ot0ð Þ þ o 1� o2 � 2B2
� �

sin ot0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
1� o2ð Þ

2
þ 4o2B2

	 

0
@

1
A

0
BBBBBBB@

1
CCCCCCCA

� e�B t1�t0ð Þ þ f 0

1� o2
� �

cos ot1ð Þ þ 2oB sin ot1ð Þ

1� o2ð Þ
2
þ 4B2o2

¼ 1,

_u1 t0; t1ð Þ þ
1

2B
� f 0

2B cos ot1ð Þ þ o sin ot1ð Þ

4B2 þ o2

� �
e�2B t0þðp=oÞ�t1ð Þ �

1

2B

� f 0

2B cos ot0ð Þ þ o sin ot0ð Þ

4B2 þ o2
¼ 0

with

_u1 ¼

cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t1 � t0ð Þ

	 

f 0

�2o2B cos ot0ð Þ þ o 1� o2
� �

sin ot0ð Þ

1� o2ð Þ
2
þ 4o2B2

 !
þ sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t1 � t0ð Þ

	 


1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p þ f 0

cos ot0ð Þ 2o2B2 þ 1� o2
� �

þ sin ot0ð Þ oB 1þ o2
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
1� o2ð Þ

2
þ 4o2B2

	 

0
@

1
A

0
BBBBBBB@

1
CCCCCCCA

� e�B t1�t0ð Þ þ of 0

2oB cos ot1ð Þ � 1� o2
� �

sin ot1ð Þ

1� o2ð Þ
2
þ 4B2o2

. ð38Þ

It is possible to write the complex system Eq. (38) as

Â cos ot0ð Þ þ B̂ sin ot0ð Þ ¼ Ĉ,

D̂ cos ot0ð Þ þ Ê sin ot0ð Þ ¼ F̂ , ð39Þ
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where the coefficients Â, B̂, Ĉ, D̂, Ê and F̂ depend on the structural parameters ðo; B; f 0Þ but also on the time
variable y ¼ t1 � t0 (see Appendix A). As remarked by Liu and Huang [20], this system can be merged into
one single nonlinear equation of y:

ĈD̂� ÂF̂
	 
2

þ ĈÊ � B̂F̂
	 
2

¼ ÂÊ � B̂D̂
	 
2

. (40)

The time t0 follows from the computation of the trigonometrical equation

cos ot0ð Þ ¼
ĈÊ � B̂F̂

ÂÊ � B̂D̂
,

sin ot0ð Þ ¼
�ĈD̂þ ÂF̂

ÂÊ � B̂D̂
if ÂÊ � B̂D̂a0. ð41Þ

The solutions y ðy ¼ oyÞ of Eq. (40) are plotted in Fig. 17 for B ¼ 0:02 and f 0 ¼ 2. The results are the
same as the ones of Liu and Huang [20]. However, the interpretation of this curve is quite different from
0
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Fig. 17. Roots of y versus o; y ¼ oy; B ¼ 0:02; f0 ¼ 2 (comparison with the necessary condition of Liu and Huang [20]).

Fig. 18. Selection of admissible values of t1.
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Fig. 19. Bifurcation diagram; B ¼ 0:02; f0 ¼ 2.
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the conclusion of [20]. Eq. (40) contains the time solution of the symmetrical (1, 2) orbit but all solutions of
Eq. (40) are not necessarily solution of the dynamical problem. In other words, Eq. (40) is only a necessary
condition to be fulfilled but not a sufficient condition. One also has to verify the inequalities:

Ê state : 8t 2 t0; t1½ �; jvðtÞjp1 and P̂
þ
state : 8t 2 t1; t2½ �; _uðtÞX0. (42)

It can be shown in this case that there is at most only one solution for parameters chosen in Fig. 17. Other
solutions violate the conditions of Eq. (42), as shown by Fig. 18 for instance. In fact, there is exactly one
solution for o greater than 0.05 and the parameters chosen for Fig. 17. This solution is the smallest one of the
solutions of Eq. (40). The bifurcation diagram of Fig. 19 numerically confirms this analytical conclusion, and
also highlights symmetrical (1, 4) and (1, 6) orbits for o lesser than 0.05.

6. Stability analysis of the symmetrical (1, 2) periodic orbit

The stability analysis of the symmetrical (1, 2) periodic orbit is based on a perturbation technique
introduced by Masri and Caughey (1966) [13]:

Dt0
Dv0

D _u0

0
B@

1
CA!

Dt1
Dv1

D _u1

0
B@

1
CA!

Dt2
Dv2

D _u2

0
B@

1
CA with Dv0 ¼ D _u0 ¼ Dv1 ¼ Dv2 ¼ D _u2 ¼ 0. (43)

The matrix A and B can be introduced for the propagation of errors:

Dt1
Dv1

D _u1

0
B@

1
CA ¼

A11 A12 A13

A21 A22 A23

A31 A32 A33

0
B@

1
CA

Dt0
Dv0

D _u0

0
B@

1
CA and

Dt2
Dv2

D _u2

0
B@

1
CA ¼

B11 B12 B13

B21 B22 B23

B31 B32 B33

0
B@

1
CA

Dt1
Dv1

D _u1

0
B@

1
CA. (44)

Eqs. (43) and (44) lead to the scalar equation:

Dt2 ¼ RDt0 with R ¼ A11B11 þ A31B13. (45)

The value of R determines the stability of the solution [13]. The symmetric (1, 2) solution is asymptotically
stable if the modulus of R is less than unity. If the modulus of R is greater than one, the solution is unstable.
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A bifurcation may occur when the modulus takes the value of unity. The coefficients that appear in the
calculation of R are given in Appendix B. R can be finally simplified in

R ¼ e�B t0�t1þð2p=oÞð Þ � cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t1 � t0ð Þ

	 

þ

Bffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t1 � t0ð Þ

	 
" #
. (46)

In the case of the undamped system, this coefficient is reduced to

R B ¼ 0ð Þ
�� �� ¼ cos t1 � t0ð Þ

�� ��p1. (47)

Generally, |R| is strictly less than unity ðt1at0 þ npÞ. This new result (obtained from a rigorous proof for
this non-smooth mechanical system) means that the symmetrical (1, 2) periodic orbit (when it exists) is always
asymptotically stable for the undamped system. It can be numerically checked that Eq. (46) leads to the same
conclusion for the damped system. The variation of R with respect to o is given in Fig. 20 which confirms the
asymptotic stability property.

7. Equivalent damping ratio and negative damping

There is a specific and large literature devoted to the determination of an equivalent damping ratio ([38–40]
or [41]). The numerous ways to get frequency and amplitude matching are the resonant amplitude method,
dynamic stiffness method, dynamic mass methody (see the recent paper [41]). The equivalent damping ratio
may be defined such that the associated linear damped system and the initial hysteretic one have the same
frequency response curves [41]. All these methods are fitting methods that approximate the equivalent
damping ratio from the unknown response of the elastoplastic oscillator. Another point of view consists in
determining the equivalent damping ratio directly from the values of the structural parameters ðf 0;o; BÞ. In the
alternating plasticity region, the dissipation could be quantified by adding negative damping such that the
dynamical system bifurcates from its 1-periodic orbit. For the undamped system ðB ¼ 0Þ, a possible dynamical
definition of this parameter would be

Find BeqX0 for f 0X 1� o2
�� �� such that the 1�periodic orbit of the dynamical

system ð9Þ associated to the damping ratio � Beq is no more stable. ð48Þ

As a consequence, the resolution of problem (48) needs to solve system (9) with a negative damping ratio.
We present some fundamental results for this particular system. However, it is not the purpose of the paper to
investigate all the complexities of such quite artificial systems, even if negative damping may arise from
aerodynamic forces [42]. Very interesting phenomena such as the grazing bifurcation have been observed.
Fig. 21 represents a typical example of a phase portrait and Fig. 22, obtained with the same parameters, shows
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Fig. 22. Quasi-periodic orbits for negative damping values; B ¼ �0:05; o ¼ 2; f0 ¼ 0.5; Poincaré map with ðv0; _u0Þ ¼ ð0; 0Þ; t � 0½2p=o�.

Fig. 21. Quasi-periodic orbits for negative damping values; B ¼ �0:05; o ¼ 2; f0 ¼ 0.5; phase portraits with ðv0; _u0Þ ¼ ð0; 0Þ.
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the quasi-periodic nature of the dynamics in this range using a Poincaré map. Unsymmetrical limit cycles have
also been detected (Fig. 23). This unsymmetrical motion (similar to results of Luo [43] for other mechanical
systems) is associated to incremental collapse for this elastoplastic oscillator. Divergence evolution can also be
noticed for this negative damped system (Fig. 24). The period-doubling bifurcation has also been observed at
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Fig. 23. Unsymmetrical limit cycle; B ¼ �0:1; o ¼ 0:45; f0 ¼ 0.6.

Fig. 24. Divergence evolution; B ¼ �0:1; o ¼ 0:25; f0 ¼ 2 with ðv0; _u0Þ ¼ ð0; 0Þ.
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the boundary along the elastoplastic shakedown region (Fig. 25). It has to be mentioned that Shaw [42]
obtained very similar results for the dynamic response of a system with dry friction, and with negative viscous
damping. The period-doubling bifurcation detected via the Poincaré map is illustrated in Fig. 26. Finally, the
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Fig. 25. Stable (2, 2) periodic orbit; B ¼ �0:01; o ¼ 2; f0 ¼ 2 with ðv0; _u0Þ ¼ ð0; 0Þ.

Fig. 26. Period-doubling bifurcation; B ¼ �0:05; o ¼ 2; t � 0½2p=o�.
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stability boundary of the period-1 orbit is represented in a multiparameter space ðB; f 0Þ for constant angular
frequency o (Fig. 27). It can be observed that the boundary of the stability domain is singular. The point
which delimitates elastoplastic shakedown and alternating collapse for the undamped system plays a crucial
role in this two-dimensional space. The boundary between elastoplastic shakedown and alternating plasticity
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Fig. 27. Stability boundary of the period-1 orbit and its singularities; o ¼ 2.
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corresponds to a bifurcation boundary for the undamped system (period-doubling bifurcation). Moreover, it
is numerically observed that equation of the boundary of the elastoplastic shakedown—alternating plasticity
domains (see Eq. (32)) seems also to be valid in the case of negative damping values when a period doubling
bifurcation occurs (see the stability domain of Fig. 27 for negative damping values):

f 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� o2ð Þ

2
þ 4o2B2eq

q
. (49)

Eq. (49) leads to the identification of the equivalent damping ratio:

Beq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
0 � 1� o2ð Þ

2

4o2

s
for f 0X 1� o2

�� ��. (50)

This very simple evaluation also coincides with the positive damping to be added to the undamped
elastoplastic oscillator, for a given set of parameters ðf 0;oÞ in the alternating plasticity domain, in order to lie
on the boundary of the elastoplastic shakedown domain. However, it appears clearly that Eq. (49)
(represented by broken lines in Fig. 27) is no longer valid in the case of the (1, 2)–(3, 4) bifurcation (Fig. 27).
Eq. (50) may be generalized to a damped system (with B damped ratio):

Bþ Beq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
0 � 1� o2ð Þ

2

4o2

s
for f 2

0X 1� o2
� �2

þ 4o2B2. (51)

8. Conclusions

This paper is devoted to the stability and the dynamics of a harmonically excited damped elastic-perfectly
plastic oscillator. The hysteretical system is written as a non-smooth forced system. It is shown that the
dimension of the phase space can be reduced using adapted variables. Free vibrations of such a system are
then considered for the damped system, which is a non-smooth autonomous system. The direct method of
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Liapounov extended to non-smooth systems [32–34] can be applied. The asymptotic stability of the origin is
proven in the new phase space. It can be remarked that the non-smooth character of most inelastic behaviours
needs the use of some specific tools to investigate the Liapounov stability of inelastic systems. The application
of the extended direct method of Liapounov to plastic systems has not been reported in the literature to the
authors knowledge.

The forced vibrations of such an oscillator are treated by numerical approach, by using the time locating
techniques. The stability of the limit cycles is analytically investigated with a perturbation approach. It has
been rigorously proven that the limit cycles are asymptotically stable in case of alternating plasticity. The
boundary between elastoplastic shakedown and alternating plasticity is given in closed form. It is shown that
this boundary corresponds to a bifurcation boundary for the undamped system (period-doubling bifurcation).
This result confirms previous results numerically reported by Challamel [24]. Finally, the equivalent damping
of this hysteretic system is characterised from dynamical properties.

This study may be enriched by integrating plastic hardening (isotropic, kinematic or mixed hardening), as
studied by Savi and Pacheco [27]. Plastic softening can also be introduced, as considered by Challamel and
Pijaudier-Cabot [29] for the free inelastic oscillator. In this case, divergence evolutions can be observed,
depending on initial conditions. Damage systems can be also classified as piece-wise linear oscillators (see for
instance Challamel and Pijaudier-Cabot [28]). The coupling between plasticity and damage could be also
interesting to investigate. However, we have in mind that in any cases (hardening plasticity, softening
plasticity, damage or coupled systems), the dimension of the phase space could not be reduced to a map as for
the perfect-plastic system. Theoretical results on stability will certainly be more difficult to obtain.
Appendix A. Time characteristics of the symmetric (1, 2) solutions

System (A.1) characterizes the time parameters of the symmetrical (1, 2) periodical solution:

Â cos ot0ð Þ þ B̂ sin ot0ð Þ ¼ Ĉ;

D̂ cos ot0ð Þ þ Ê sin ot0ð Þ ¼ F̂ and y ¼ t1 � t0:
(A.1)

The constants of system (A.1) denoted by Â, B̂, Ĉ, D̂, Ê and F̂ are given below:
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2
664

3
775, ðA:5Þ
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Ê ¼ �
f 0

4B2 þ o2
oþ o cos oyð Þ � 2B sin oyð Þð Þ e�2B ðp=oÞ�yð Þ
h i

þ
f 0

1� o2ð Þ
2
þ 4o2B2

o 1� o2
� �

e�B ð2p=oÞ�yð Þ cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
y

	 

þ

oB 1þ o2
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p e�B ð2p=oÞ�yð Þ sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
y

	 


�2o2Be�2B ðp=oÞ�yð Þ sin oyð Þ � o 1� o2
� �

e�2B ðp=oÞ�yð Þ cos oyð Þ

2
664

3
775, ðA:6Þ

F̂ ¼
1

2B
1� e�2B ðp=oÞ�yð Þ
	 


� e�B ð2p=oÞ�yð Þ
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
y

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p . (A.7)

This system leads to the solution of Liu and Huang [20].

Appendix B. Determination of the coefficients for the stability analysis

The first coefficient to be determined is A11 defined by

Dt1 ¼ A11Dt0. (B.1)

In the elastic regime, evolution of v is given by Eq. (26) which can be written as

v t0; tð Þ ¼ e�B t�t0ð Þ A1 cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t� t0ð Þ

	 

þ B1 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t� t0ð Þ

	 
h i
þ C1 cos otþD1 sin ot

with A1 ¼ �1� C1 cos ot0 �D1 sin ot0; B1 ¼
A1Bþ C1o sin ot0 �D1o cos ot0ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� B2
p ,

C1 ¼ f 0

1� o2

1� o2ð Þ
2
þ 4o2B2

; D1 ¼ f 0

2Bo

1� o2ð Þ
2
þ 4o2B2

. ðB:2Þ

A perturbation approach is used:

v t0; t1ð Þ ¼ 1,

v t0 þ Dt0; t1 þ Dt1ð Þ ¼ v t0; t1ð Þ þ Dt0
qv t0; t1ð Þ

qt0
þ Dt1

qv t0; t1ð Þ

qt1
¼ 1. ðB:3Þ

The second equation of (B.3) leads to the determination of

A11 ¼ �
qv t0; t1ð Þ=qt0
qv t0; t1ð Þ=qt1

. (B.4)

A11 is finally calculated as

A11 ¼
1þ f 0 cos ot0
_u1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p e�B t1�t0ð Þ sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t1 � t0ð Þ

	 

, (B.5)

where _u1 is the displacement rate at the end of the elastic phase. _u1 can be expressed by

_u1 ¼ e�B t1�t0ð Þ �BA1 þ B1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p	 

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t1 � t0ð Þ

	 
h
þ �BB1 � A1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p	 

sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t1 � t0ð Þ

	 
i
� C1o sin ot1 þD1o cos ot1. ðB:6Þ

It is easy moreover to expand this term:

D _u1 ¼
q _u1 t0; t1ð Þ

qt0
Dt0 þ

q _u1 t0; t1ð Þ

qt1
Dt1. (B.7)

The term A31 can be deduced:

A31 ¼
q _u1 t0; t1ð Þ

qt0
þ A11

q _u1 t0; t1ð Þ

qt1
. (B.8)
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The terms of Eq. (B.8) are detailed below:

q _u1 t0; t1ð Þ

qt1
¼ �1� 2B _u1 þ f 0 cos ot1 (B.9)

and

q _u1 t0; t1ð Þ

qt0
¼ 1þ f 0 cos ot0
� �

e�B t1�t0ð Þ � cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t1 � t0ð Þ

	 

þ

Bffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t1 � t0ð Þ

	 
" #
. (B.10)

The same reasoning can be applied to the determination of B11 and B13, obtained from the function
_u2ð _u1; t1; t2Þ:

_u2 _u1; t1; t2ð Þ ¼ B2e
�2B t2�t1ð Þ þ C2 cos ot2 þD2 sin ot2 �

1

2B

with C2 ¼ f 0

2B
o2 þ 4B2

; D2 ¼ f 0

o
o2 þ 4B2

; B2 ¼ _u1 þ
1

2B
� C2 cos ot1 �D2 sin ot1. ðB:11Þ

The perturbation approach leads to

B11 ¼ �
q _u2 _u1; t1; t2ð Þ=qt1
q _u2 _u1; t1; t2ð Þ=qt2

and B13 ¼ �
q _u2 _u1; t1; t2ð Þ=q _u1

q _u2 _u1; t1; t2ð Þ=qt2
. (B.12)

These terms are calculated as following:

B11 ¼
e�2B t2�t1ð Þ

1þ f 0 cos ot0
1þ 2B _u1 � f 0 cos ot1
� �

and B13 ¼
e�2B t2�t1ð Þ

1þ f 0 cos ot0
. (B.13)

Some simplification occurs by noticing that

B11 ¼ �B13
q _u1 t0; t1ð Þ

qt1
. (B.14)

R is then simplified by

R ¼ B13
q _u1 t0; t1ð Þ

qt0
¼ e�B t0�t1þð2p=oÞð Þ � cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t1 � t0ð Þ

	 

þ

Bffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
t1 � t0ð Þ

	 
" #
. (B.15)
References

[1] J. Lemaitre, J.L. Chaboche, Mechanics of Solid Materials, Cambridge University Press, Cambridge, 1990.

[2] J. Awrejcewicz, C.H. Lamarque, Bifurcations and Chaos in Nonsmooth Mechanical Systems, World Scientific, Singapore, 2003.

[3] M. Jirasek, Z.P. Bazant, Inelastic Analysis of Structures, Wiley, Chichester, 2002.

[4] L.S. Jacobsen, Dynamic behaviour of simplified structures up to the point of collapse, Proceeding, Symposium Earthquake and Blast

Effects on Structures, 94–113, 1952.

[5] R. Tanabashi, Studies on nonlinear vibration of structures subjected to destructive earthquakes, World Conference on Earthquake

Engineering, Proceedings, Berkeley, California, 1956, pp. 6-1–6-7.

[6] T.K. Caughey, Sinusoidal excitation of a system with bilinear hysteresis, Journal of Applied Mechanics 27 (4) (1960) 649–652.

[7] P.C. Jennings, Periodic response of a general yielding structure, Journal of Engineering Mechanics 90 (1964) 131–166.

[8] W.D. Iwan, The steady-state response of the double bilinear hysteretic model, Journal of Applied Mechanics 32 (1965) 921–925.

[9] D. Capecchi, Periodic response and stability of hysteretic oscillators, Dynamics and Stability of Systems 6 (2) (1991) 89–106.

[10] D. Capecchi, F. Vestroni, Periodic response of a class of hysteretic oscillators, International Journal of Non-linear Mechanics 25 (2–3)

(1990) 309–317.

[11] S. Chatterjee, A.K. Mallik, A. Ghosh, Periodic response of piecewise non-linear oscillators under harmonic excitation, Journal of

Sound and Vibration 191 (1) (1996) 129–144.

[12] S.F. Masri, General motion of impact dampers, Journal of the Acoustical Society of America 47 (1970) 229–237.

[13] S.F. Masri, T.K. Caughey, On the stability of the impact damper, Journal of Applied Mechanics 33 (1966) 586–592.

[14] G.R. Miller, M.E. Butler, Periodic response of elastic-perfectly plastic SDOF oscillator, Journal of Engineering Mechanics 114 (3)

(1988) 536–550.



ARTICLE IN PRESS
N. Challamel, G. Gilles / Journal of Sound and Vibration 301 (2007) 608–634634
[15] D. Capecchi, Asymptotic motions and stability of the elastoplastic oscillator studied via maps, International Journal of Solids and

Structures 30 (23) (1993) 3303–3314.

[16] S.F. Masri, Forced vibration of the damped bilinear hysteretic oscillator, Journal of the Acoustical Society of America 57 (1975)

105–112.

[17] W.D. Iwan, The dynamic response of the one-degree-of-freedom bilinear hysteretic system, Proceedings of the Third World

Conference on Earthquake Engineering, 1964.

[18] C.D. Coman, Dissipative effects in piecewise linear dynamics, Discrete and Continuous Dynamical Systems—Series B 3 (2) (2003)

163–177.

[19] C.D. Coman, On a class of non-smooth oscillators, Dynamical Systems 18 (1) (2003) 1–22.

[20] C.S. Liu, Z.M. Huang, The steady-state responses of s.d.o.f viscous elasto-plastic oscillator under sinusoidal loadings, Journal of

Sound and Vibration 273 (2004) 149–173.

[21] M. Wiercigroch, Modelling of dynamical systems with motion dependent discontinuities, Chaos, Solitons and Fractals 11 (2000)

2429–2442.

[22] J.C. Ji, A.Y.T. Leung, Periodic and chaotic motions of a harmonically forced piecewise linear system, International Journal of

Mechanical Sciences 46 (2004) 1807–1825.

[23] A.C.J. Luo, L. Chen, Periodic motions and grazing in a harmonically forced, piecewise, linear oscillator with impacts, Chaos, Solitons

and Fractals 24 (2005) 567–578.

[24] N. Challamel, Dynamic analysis of elastoplastic shakedown of structures, International Journal of Structural Stability and Dynamics 5

(2) (2005) 259–278.

[25] S.W. Shaw, P.J. Holmes, A periodically forced piecewise linear oscillator, Journal of Sound and Vibration 90 (1983) 129–155.

[26] E. Chicurel-Uziel, Exact, single equation, closed-form solution of vibrating systems with piecewise linear springs, Journal of Sound

and Vibration 245 (2) (2001) 285–301.

[27] M.A. Savi, P.M.C.L. Pacheco, Non-linear dynamics of an elasto-plastic oscillator with kinematic and isotropic hardening, Journal of

Sound and Vibration 207 (2) (1997) 207–226.
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